Приветствую Вас Гость | RSS
Главная » импульсный стабилизатор напряжения-1 » Регистрация » ВходЧетверг
2024-Апр-18
14:53

Электронные устройства, выполненные на цифровых микросхемах, не предъявляют слишком высоких требований к стабильности и уровню пульсаций питающего напряжения. Поэтому для питания таких устройств можно с успехом применять простейшие ключевые стабилизаторы напряжения. Они имеют высокий КПД, меньшие габариты и массу по сравнению с непрерывными стабилизаторами. Правильное конструктивное исполнение ключевого стабилизатора позволяет избежать проникновения высокочастотных помех в питаемое устройство.

На рис. 1 показана принципиальная схема простого ключевого стабилизатора. При высоких энергетических показателях качество выходного напряжения позволяет подключать к стабилизатору устройства, выполненные на цифровых микросхемах серий К130, К133, К134, К.155, К156, К561 и др.

Основные технические характеристики

Входное напряжение, В ... 15...25

Выходное напряжение, В ... 5

Максимальный ток нагрузки, А 4

Пульсации выходного напряжения при токе нагрузки 4 А во всем интервале питающего напряжения, мВ, не более . . 50

КПД, %, не хуже..... 60

Рабочая частота при входном напряжении 20 В, токе нагрузки 3 А, кГц...... 20

При подаче на вход устройства напряжения питания в цепи базы составного транзистора VT2, VT3 появляется ток, вследствие чего он открывается. Цепь R3C2 обеспечивает импульсный характер возникновения этого тока, что способствует форсированному открыванию составного транзистора. После его открывания через дроссель L1 начинает протекать возрастающий ток, заряжающий накопительные конденсаторы СЗ, С4. Когда напряжение на этих конденсаторах достигает некоторого уровня U1, открываются транзисторы VT4 и VT1. Последний из них, насыщаясь, подключает к эмиттерному переходу транзистора VT2 заряженный в закрывающей полярности конденсатор С2. Это способствует быстрому закрыванию составного транзистора.

Ток в дросселе L1 не может мгновенно прерваться, поэтому после закрывания транзисторов VT2, VT3 открывается диод VD1, который замыкает цепь тока через дроссель L1. В этот отрезок времени ток в дросселе уменьшается, а с момента, когда он сравняется с током нагрузки, начинает уменьшаться и напряжение на конденсаторах СЗ, С4. При некотором его значении U2 транзисторы VT4 и VT1 закрываются, a VT2 и VT3 — открываются, и ток в дросселе L1 начинает снова увеличиваться, диод VD1 закрывается.

Напряжение на конденсаторах СЗ, С4 продолжает уменьшаться до значения из, когда ток в дросселе L1 становится равным току нагрузки; соотношение значений напряжения на накопительных конденсаторах таково: U3<U2<U1. Начиная с этого момента, напряжение на конденсаторах СЗ, С4 снова начинает увеличиваться, и цикл работы стабилизатора повторяется. Конденсатор С5 создает на базе транзистора VT4 необходимый фазовый сдвиг сигнала обратной связи, определяющий частоту следования рабочих циклов. Фильтр L2C6 служит для уменьшения пульсаций выходного напряжения.

В устройстве использованы стандартные летали, кроме дросселей L1 и L2. Они самодельные, намотаны на пластмассовых каркасах, помещенных в броневые магнитопроводы Б22 из феррита М2000НМ. Дроссель L1 содержит 18 витков жгута из 7 проводов ПЭВ-1 0,35. Между чашками его магнитопро-вода вложена прокладка толщиной 0,8 мм. Активное сопротивление обмотки дросселя L1 27 мОм. Дроссель L2 содержит 9 витков жгута из 10 проводов ПЭВ-1 0,35. Зазор между его чашками —- 0,2 мм, активное сопротивление обмотки — 13 мОм. Прокладки можно изготовить из жесткого теплостойкого материала — текстолита, слюды, электрокартоиа. Винт, скрепляющий чашки магнитопровода, должен быть из немагнитного материала, например из латуни.

Конденсаторы С1, СЗ, С4 работают в режиме больших токовых импульсов. Для этого режима наиболее подходят оксидные конденсаторы К52-1. Можно попробовать заменить их на К53-1а, К50 24, K50-1G на напряжение не менее 15 В (СЗ, С4) и 25 В (С1). Однако частотные свойства атих конденсаторов хуже, чем у К52-1, поэтому ту же емкость нужно будет набрать параллельным соединением 4—5 конденсаторов с одинаковым номиналом. Транзистор VT2 можно заменить на КТ644, КТ626 с любыми буквенными индексами.

Для налаживания стабилизатора к его выходу подключают нагрузочный резистор сопротивлением 5...7 Ом и мощностью 10 Вт. При исправности всех деталей стабилизатор сразу начинает работать. Сначала подборкой резистора R7 устанавливают номинальное выходное напряжение. Далее увеличивают ток нагрузки до 3 А и, подбирая конденсатор С5, устанавливают такую частоту генерации (примерно 18...20 кГц), при которой высокочастотные выбросы напряжения на конденсаторах СЗ, C4 минимальны. На этом налаживание считают законченным.

Стабилизатор рассчитан на работу при выходном напряжении 5 В, однако его можно и увеличить до 8...10 В, увеличив номинал резистора R7 и подобрав новое значение рабочей частоты. Однако при этом мощность, рассеиваемая на транзисторе VT3, также увеличится, что потребует либо ограничения тока нагрузки, либо увеличения размеров теплоотвода.

Тщательно смонтированный и налаженный стабилизатор имеет весьма незначительные высокочастотные пульсации выходного напряжения, поэтому никаких дополнительных мер принимать не нужно. Если же он будет работать в широком диапазоне температуры, то настройка "уходит” и высокочастотные выбросы выходного напряжения, хотя и незначительные, появляются. Если к качеству выходного напряжения предъявляются повышенные требования, необходимо конденсаторы СЗ, С4 за шунтировать не сколькими керамическими конденсаторами КМ-6б общей емкостью 3...5 мкФ. Кроме того, такие же конденсаторы желательно предусмотреть и непосредственно на входе питаемого устройства, но их емкость может быть в 10. .20 раз меньше.

Если необходимо избежать распространения высокочастотных помех во входные цепи стабилизатора, его нужно питать через Г-образный LC-фильтр. Катушка должна иметь индуктивность 5...10 мкГн и ток насыщения не менее 2 А (наматывать ее желательно на замкнутом магнитопроводе). Конденсатор — керамический, емкостью 1...2,2 мкФ (например, КМ-6б).

Так как во время работы устройства некоторые элементы могут нагреваться до температуры 90...100 °С, плату желательно расположить вертикально, и принять меры против нагревании стабилитрона VD2, иначе выходное напряжение будет уменьшаться.

А. МИРОНОВ

г. Люберцы Московской обл..

РАДИО № 8, 1985 г., с. 44.

Меню сайта
Форма входа
Поиск
Календарь
«  Апрель 2024  »
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
2930
Архив записей
Наш опрос
что для вас интернет
Всего ответов: 159
Друзья сайта
  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Статистика

    Онлайн всего: 1
    Гостей: 1
    Пользователей: 0
    Copyright my 155 © 2024